Instructions for the Group Exercise on Fitting Gamma and Log-Normal Distributions to Protein Lengths

Most genes in a genome encode proteins. The distribution of protein lengths is remarkably similar across the tree of life—bacteria, archaea, and eukaryotes. For an overview, see: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02973-2. There are multiple reasons why protein lengths are confined to a relatively narrow interval shared across species. A compelling explanation is that proteins should be short enough to fold and function quickly (activation barriers tend to increase with protein length) yet stable against temperature-induced misfolding. See Eqs. 6–7 and Fig. 4 in: https://www.pnas.org/doi/full/10.1073/pnas.1114477108, which uses data and a model

from: https://www.sciencedirect.com/science/article/pii/S0006349511006618.

Gamma and log-normal distributions are often used to describe protein-length distributions in an evolutionary context. Several evolutionary processes can lead to these shapes:

- Gene duplication and divergence. Over time, duplicates accumulate mutations, insertions, and deletions, yielding proteins of varying lengths. If insertion/deletion (indel) rates linearly scale with gene length, multiplicative effects can produce an approximately log-normal distribution of lengths.
- Functional constraints. Many proteins contain conserved domains under stronger selection, with other regions more variable. This can yield shapes well captured by a Gamma distribution with a peak near conserved domain sizes.

Early modeling ideas along these lines appeared when only a few genomes were available; for examples, see:

https://link.springer.com/article/10.1007/BF00163155 https://www.sciencedirect.com/science/article/pii/S0378437199003702

https://www.sciencedirect.com/science/article/pii/S0168952599019228

In practice, empirical protein-length distributions in a given species are often fit with Gamma or log-normal probability density functions; see Fig. 10 in:

https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-5-85.

Assignment 1 (Escherichia coli K-12 MG1655)

Goal. Determine whether a Gamma or a log-normal distribution provides a better fit to the distribution of protein lengths in *Escherichia coli* str. K-12 substr. MG1655.

1. Download the gene table.

Source (taxon 511145): https://www.ncbi.nlm.nih.gov/datasets/gene/taxon/511145/
Tip: Use the "Select Columns" option to include all relevant features. Expect roughly 4,600 genes.

2. Load into MATLAB (or Python).

One simple path is to open the downloaded TSV in Excel, save as e_coli_K12_MG1655_genes.xlsx, then import it to MATLAB:

a = readmatrix('e_coli_K12_MG1655_genes.xlsx'); % numeric values

c = readcell('e_coli_K12_MG1655_genes.xlsx'); % text values

(Adjust sheet/range options as needed for your file.)

3. Compute gene lengths (nt).

Use the columns "Annotation Genomic Range Start" and "Annotation Genomic Range Stop."

- Gene length cannot be negative.
- Check coordinate conventions; if coordinates are inclusive, add 1 when computing length.

4. Filter to protein-coding genes.

Keep rows with "gene type" = PROTEIN_CODING.

5. Convert to protein lengths (aa).

Compute amino-acid length from nucleotide length: three bases per amino acid, and the terminal stop codon is not counted.

- If any protein lengths come out non-integer, diagnose and correct (e.g., annotation offsets, untranslated regions).
- Sanity-check a few genes by comparing to NCBI (e.g., dnaA is 467 aa): https://www.ncbi.nlm.nih.gov/datasets/gene/id/948217/products/

6. Fit distributions in MATLAB.

Use the distributionFitter app (or programmatically) to fit both Gamma and lognormal to the protein-length data. Copy the numerical fit summaries to your report. An illustrative output might look like:

Distribution: Gamma

Log likelihood: -20000.6 % less negative (higher) is better for comparable models

Domain: 0 < y < Inf

Mean: 300.0 Variance: 43000.7

In the app, set **Display type → "Probability plot"** and **Distribution → "Lognormal"** to visualize the fit; include a snapshot.

Question. Which distribution fits *E. coli* protein lengths better? Justify your answer using the log-likelihoods.

Assignment 2 (Thermococcus kodakarensis)

Goal. Repeat Assignment 1 for *Thermococcus kodakarensis*, a hyperthermophilic archaeon that inhabits marine hydrothermal vents and terrestrial hot sulfur springs, growing across ~60–100 °C.

- 1. Download the gene table.
 - Source (taxon 69014): https://www.ncbi.nlm.nih.gov/datasets/gene/taxon/69014/
- 2. Repeat steps for computing protein lengths and fitting both Gamma and lognormal.

Report fit statistics (log-likelihoods and, if available, AIC/BIC) and summary measures (mean, median).

Questions.

- Which distribution (Gamma vs. log-normal) better fits *T. kodakarensis* protein lengths?
- Is there a systematic difference between average protein length in *T. kodakarensis* and *E. coli*? Comment on biological plausibility.